Identity:
Marie-Claire Cammaerts (Tricot), born the 25th November 1947
Doctor in zoological sciences, diploma of superior education
27, square du Castel Fleuri, 1170 Bruxelles
Phone : 2 32 673 49 69
e-mail : mccammaerts@gmail.com
Professional works:
I worked on ants since 1969, and I teached to 18 -20 years old students in medicine from 1969 till 2015. I thought that researchers (e.g. on ants’ biology, on cognition, on numerosity abilities), practitioners (e.g. interested in the side effects of drugs), as well as students in biology and ethology could be interested to have my different works at their disposal.
Therefore, I set these works on the present web site planned as follows:
1. research works on ants
1.1. on different aspects of their biology
● published papers ranged according their topic
1.2. used as biological models for examining the side effects of ‘products’ used by humans
● published papers ranged according to the ‘product’ examined
2. other research works
3. educational works
3.1. lessons given to students (power points in French)
3.2. practical works explained in power point, in French
3.3 course
4. lecture
I am ready to give any request explanation about my works research works (experimental details, mathematical analysis …), to send software OVS at any one, and to provide the power points (in French) of my lessons, explained practical works, course and lecture to any requester.
My postal address, my e-mail address and my phone number are written here above (section ‘Identity’)
5. projects
Detailed list of works
1. works on ants
1.1 ontheir biology, cognition, ontogenesis of abilities, numerosity abilities …
● general biology
Cammaerts M-C. 1977. Etude démograpique annuelle des sociétés de Myrmica rubra L. des environs de Bruxelles. Ins. Sociaux, 24, 147-161.
Cammaerts R., Cammaerts M-C. 1987. Nest topology, nestmate recognition, territorial marking and homing in the ant Manica rubida (Hymenoptera, Formicidae). Biology of Behaviour, 12, 65-81.
Cammaerts R., Detrain C., Cammaerts M-C. 1990. Host trail following by the myrmecophilous beetle Edaphopaussus favieri (Fairmaire) (Carabidae Paussinae). Insectes Sociaux, 37, 200-211.
Cammaerts M-C., Verhaeghe J-C., Cammaerts R., Lesseux R. 1991. A hiterto unknown ethological factor in the ant Tetramorium impurum (Myrmicinae). Behavioural Processes, 23, 193-203.
Detrain C., Cammaerts M-C. 1991. A new pheromone in the ant Pheidole pallidula (Myrmicinae). Behav. Processes, 24, 123-132.
Cammaerts M-C. 1992. Anatomical origin and isolation of an ethological factor previously found in the workers of Myrmica rubra L. (Formicidae, Myrmicinae). J. Insect Physiol., 38, 101-110.
Verhaeghe J-C., Cammaerts M-C. 1993. Possible function for a previously discovered pheromone on the last sternite of the ant Tetramorium impurum Mayr (Hymenoptera, Formicidae, Myrmicinae). Behavioural Processes, 28, 199-208.
Cammaerts R., Cammaerts M-C., Dejean A. 1994. The trail of the African urticating ant, Tetramorium aculeatum : source, potency and workers’ behavior (Hymenoptera, Formicidae). J. Insect Behavior, 7, 533-552.
Cammaerts M.-C. 2005. How do workers of the ant Myrmica sabuleti (Hymenoptera, Formicidae) estimate the distance they walk? Belgian Journal of Entomology, 7, 87-98.
Cammaerts M.-C., Vandenbusshe A., Debeir O. 2008. Méthode d’étude de la forme d’une structure microscopique, opaque et solide, appliquée à l’œil d’une fourmi. Belgian Journal of Entomology, 10: 67-79.
Rachidi Z., Cammaerts M.-C., Debeir O. 2008. Morphometric study of the eye of three species of Myrmica (Formicidae). Belgian Journal of Entomology, 10 : 81-91.
Cammaerts M.-C., Cammaerts R. 2015. Are ants (Hymenoptera, Formicidae) capable of self recognition? Journal of Sciences, 5 (7): 521-532.
Cammaerts M.-C. 2017. Some new information on ants’ cemeteries organization. Asian Journal of Biology, 2 (1): 1 -10.
● chemical analysis of their secretions
Cammaerts M.-C. 2023. New insight on ant colony organization. Research Trends, accepted, published on line
Cammaerts-Tricot M-C., Morgan E.D., Tyler R.C., Braekman J-C., 1976. Dufour’s gland secretion of Myrmica rubra : chemical, electrophysiological and ethological studies. J. Insect Physiol., 22, 927-932.
Cammaerts-Tricot M-C., Morgan E.D., Tyler R.C. 1977. Isolation of the trail pheromone of Myrmica rubra. J. Insect Physiol., 23, 421-427.
Morgan E.D., Tyler R.C., Cammaerts M-C. 1977. Identification of the components of the Dufour’s gland secretion of the ant Myrmica rubra L. and their behavioural responses. J. Insect Physiol., 23, 511-515.
Cammaerts M-C., Inwood M.R., Morgan E.D., Parry K., Tyler R.C. 1978. Comparative study of the pheromones emitted by workers of the ants Myrmica rubra and Myrmica scabrinodis. J. Insect Physiol., 24, 207-214.
Morgan E.D., Inwood M.R., Cammaerts M-C. 1978. The mandibular gland secretion of the ant Myrmica scabrinodis. Physiol. Entomol., 3, 107-114.
Cammaerts M-C., Evershed R.P., Morgan E.D. 1981a. Comparative study of the Dufour gland secretion of workers of four species of Myrmica ants. J. Insect Physiol., 27, 59-65.
Cammaerts M-C., Evershed R.P., Morgan E.D. 1981b. Comparative study of the mandibular gland secretion of workers of four species of Myrmica ants. J. Insect Physiol., 27, 225-231.
Evershed R.P., Morgan E.D., Cammaerts M-C. 1981. Identification of the trail pheromone of the ant Myrmica rubra L., and related species. Naturwissenschaften, 67, 374-385.
Cammaerts M-C., Evershed R.P., Morgan E.D. 1982. Mandibular gland secretion of Myrmica rugulosa and Myrmica schenki ; comparison with four other Myrmica species. J. Insect Physiol., 7, 119-125
Attygalle A., Cammaerts M-C., Morgan E.D. 1983. Dufour gland secretion of Myrmica rugulosa and Myrmica schenki. J. Insect Physiol., 1, 27-32.
Evershed R.P., Morgan E.D., Cammaerts M-C. 1982. 3-Ethyl-2,5-dimethylpyrazine, the trail pheromone from the venom gland of eight species of Myrmica ants. Insect Biochemistry, 12, 383-391.
Cammaerts M-C., Evershed R.P., Morgan E.D. 1983. The volatile components of the mandibular gland secretion of workers of the ants Myrmica lobicornis and Myrmica sulcinodis. J. Insect Physiol., 29, 659-664.
Attygalle A.B., Evershed R.P., Morgan E.D., Cammaerts M-C. 1983. Dufour gland secretion of workers of the ants Myrmica sulcinodis and lobicornis, and comparison with six other species of Myrmica. Insect Biochemistry, 13, 507-512.
Cammaerts M-C., Attygalle A.B., Morgan E.D. 1985. The pheromonal activity of chiral 3-octanol for Myrmica ants. Physiol. Entomol., 10, 33-36.
Attygalle A.B., Cammaerts M-C., Cammaerts R., Lancaster V., Morgan E.D. 1986. Chemical and ethological studies of the trail pheromone of the ant Manica rubida (Hymenoptera, Formicidae). Physiol. Entomol., 11, 125-132.
Cammaerts M-C., Mori K. 1987. Behavioural activity of pure chiral 3-octanol in Myrmica scabrinodis Nyl. and Myrmica rubra L. Physiol. Entomol., 12, 381-385.
Cammaerts M-C., Attygalle A., Vostrouwsky O., Besttmann H.J. 1988. Ethological studies of the mandibular gland secretion of the ant Manica rubida (Formicidae – Myrmicinae). J. Insect Physiol., 34, 347-350.
Attygalle A.B., Cammaerts M-C., Jackson B.D., Morgan E.D. 1990. Chemical and behavioural studies on the Dufour gland contents of Manica rubida (Hymenoptera: Formicidae). J. Chemical Ecol., 16, 827-840.
Jackson B.D., Keegans S.J., Morgan E.D., Cammaerts M-C., Cammaerts R. 1990. Trail pheromone of the ant Tetramorium meridionale. Naturwissenschaften, 77, 294-296.
Cammaerts M-C., Cammaerts R. 1994. Thin-layer chromatographic isolation of the trail pheromone of the ant Pheidole pallidula. Physiol. Entomol., 19, 258-264.
● chemical communication
Tricot M-C., Pasteels J-M., Tursch B. 1972. Phéromones stimulant et inhibant l’agressivité chez Myrmica rubra. J Insect Physiol., 18, 499-509.
Cammaerts-Tricot M-C. 1973. Phéromones agrégeant les ouvrières de Myrmica rubra. J. Insect Physiol., 19, 1299-1315.
Cammaerts-Tricot M-C. 1974. Piste et phéromone attractive chez la fourmi Myrmica rubra. J. Comp. Physiol., 88, 373-382.
Cammaerts M-C. 1982. Une source inédite de phéromone chez Myrmica rubra L. Ins. Sociaux, 29, 524-534.
Cammaerts M-C. 1984. Probable function for a previously unrecognized pheromone in ants of the genus Myrmica. Behav. Processes, 9, 135-145.
●recruitment of nestmates
Cammaerts-Tricot M-C. 1974. Recrutement d’ouvrières, chez Myrmica rubra, par les phéromones de l’appareil à venin. Behaviour, L, 1-2, 111-122.
Cammaerts M-C. 1977. Recrutement d’ouvrières vers une source d’eau pure ou sucrée chez la fourmi Myrmica rubra L. (Formicidae). Biology of Behaviour, 2, 287-308.
Cammaerts M-C. 1978. Recruitment to food in Myrmica rubra. Biology of Behaviour, 4, 159-172.
Cammaerts M-C. 1980. Système d’approvisionnement chez Myrmica scabrinodis. Ins. Sociaux, 27, 328-342.
Cammaerts M-C., Cammaerts R 1980. Food recruitment strategies of the ants Myrmica sabuleti and Myrmica ruginodis. Behavioural Processes, 5, 251-270.
Cammaerts M-C., Cammaerts R. 1981. Food gathering method of Myrmica rugulosa (Formicidae) including an original system for ants’ recruitment. Biology of Behaviour, 6, 239-254.
Cammaerts M-C., Cammaerts R. 1985. Food-collection behaviour of the ant Manica rubida. Biology of Behaviour, 10, 291-308.
● area marking
Cammaerts-Tricot M-C., Morgan E.D., Tyler R.C. 1977. Territorial marking in the ant Myrmica rubra L. (Formicidae). Biologie du Comportement, 2, 263-272.
Mayade S., Cammaerts M-C., Suzzoni J-P. 1993. Home-range marking and territorial marking in Cataglyphis cursor (Hymenoptera, Formicidae). Behav. Processes, 30, 131-142.
Cammaerts M-C., Cammaerts R. 1996. Area marking in the ant Pheidole pallidula (Myrmicinae). Behav. Processes, 37, 21-30.
Cammaerts M-C., Cammaerts R. 1998. Marking of nest entrance vicinity in the ant Pheidole pallidula (Formicidae, Myrmicinae). Behav. Processes, 42, 19-31.
Cammaerts M-C., Cammaerts R. 1999. Marking of nest entrances and their vicinity in the ant Myrmica rubra. Biologia, 54, 553-566.
Cammaerts M-C., Cammaerts R. 2000. Foraging area marking in two related Tetramorium ant species (Hymenoptera : Formicidae). J. Ins. Behavior, 13, 679-698.
Cammaerts M-C., Cammaerts R. 2001 Marking of nest entrances and vicinity in two related Tetramorium ant species (Hymenoptera : Formicidae). J. Ins. Behavior, 14, 247-269.
Cammaerts M-C., Cammaerts R. 2000 Nest odour in the ant Myrmica rubra (Myrmicinae). Biologia, 55, 509-523.
●visual perception
Cammaerts M-C. 2004. Some characteristics of the visual perception of the ant Myrmica sabuleti. Physiological Entomology, 29, 472-482.
Cammaerts, M.-C. 2005. Sensitivity and adaptation of Myrmica sabuleti workers (Hymenoptera : Formicidae) to light. Myrmecologishe Nachrichten, 7, 77-86.
Cammaerts M.-C. 2006. Discrimination visuelle de formes, de contours, de nombres d’éléments et de l’orientation d’un élément par la fourmi Myrmica sabuleti. Belgian Journal of Entomology. 8, 43-54.
Cammaerts M.-C. 2008. Visual discrimination of cues differing as for their number of elements, their shape or their orientation, by the ant Myrmica sabuleti. Biologia, 63 : 1169-1180.
Cammaerts M.-C. 2007. Perspective vision in workers of Myrmica sabuleti Meinert, 1861 (Hymenoptera : Formicidae). Myrmecological News, 10, 21-26.
Cammaerts M.-C. 2007. Colour vision in the ant Myrmica sabuleti Meinert, 1861 (Hymenoptera : Formicidae). Myrmecological News, 10, 41-50.
Cammaerts M.-C., Cammaerts D. 2009. Light thresholds for colour vision in the workers of the ant Myrmica sabuleti (Hymenoptera : Formicidae). Belgian Journal of Zoology, 138 : 40-49.
Cammaerts M.-C. 2011. Visual vertical subtended angle of Myrmica ruginodis and Myrmica rubra (Formicidae, Hymenoptera). Bull Soc. R. Belg. Ent, 147: 113-120.
Cammaerts M.-C. 2012. The visual perception of the ant Myrmica ruginodis (Hymenoptera – Formicidae). Biologia, 67: 1165-1174
Cammaerts M.-C. 2013. Myrmica rubra workers’ visual perception (Hymenoptera, Formicidae). Belg. J. Zool. 143: 69-78.
● navigation
Cammaerts M.-C., Lambert A. 2009. Maze negotiation by a Myrmicine ant (Hymenoptera: Formicidae). Myrmecological news. 12: 41-49.
Cammaerts M.-C., Rachidi Z. 2009. Olfactory conditioning and use of visual and odorous elements for movement in the ant Myrmica sabuleti (Hymenoptera, Formicidae). Myrmecological news. 12: 117-127.
Cammaerts M.-C., Rachidi Z., Beke S. & Essaadi Y. 2012. Use of olfactory and visual cues for traveling by the ant Myrmica ruginodis (Hymenoptera, Formicidae). Myrmecological News, 16:45-55.
Cammaerts M.-C. 2012. Navigation system of the ant Myrmica rubra (Hymenoptera, Formicidae). Myrmecological News. 16: 111-121.
● conditioning
Cammaers M-C. 2004. Classical conditioning, temporal learning and spatial learning in the ant Myrmica sabuleti. Biologia, 59, 243-256.
Cammaerts M-C. 2004. Visual cue generalisation and spatial conditioning in the ant Myrmica sabuleti. Biologia, 59, 257-271.
Cammaerts M.-C. 2004. Operant conditioning in the ant Myrmica sabuleti. Behavioral Processes, 67, 417-425.
Cammaerts M.-C., Rachidi Z. & Cammaerts D. 2011. Collective operant conditioning and circadian rhythms in the ant Myrmica sabuleti (Hymenoptera, Formicidae). Bull. Soc. R. Belg. Ent. 147: 142-154.
Cammaerts M.-C., Nemeghaire S. 2012. Why do workers of Myrmica ruginodis (Hymenoptera, Formicidae) navigate by relying mainly on their vision? Bull Soc. R. Ent. Belg. 148: 42-52.
Cammaerts M.-C 2012. Olfactory and visual operant conditioning in the ant Myrmica rubra (Hymenoptera, Formicidae). Bull Soc. R. Ent. Belg. 148: 199-208.
Cammaerts M.-C. 2013. Sensu stricto individual conditioning, and imitation, in the ant Myrmica sabuleti (Hymenoptera, Formicidae). Annales de la société entomologique de France, 49: 402-412.
Cammaerts M.-C. 2013. Spatio-temporal learning in three Myrmica species (Hymenoptera, Formicidae). Bull Soc. R. Ent. Belg. 149: 131-138.
Cammaerts M.-C. 2013. Age dependent spatio-temporal learning in the ant Myrmica sabuleti (Hymenoptera, Formicidae), Bull Soc. R. Ent. Belg. 149 :205-212.
● visual perception + navigation + conditioning
Cammaerts M.-C. & Cammaerts D. 2014. Comparative outlook over three Myrmica species’ biotopes and foragers’ know-how, Biologia, 69: 1051-1058. DOI: 10.2478/s11756-014-0399-Z
● queens
Coglitore C., Cammaerts M-C. 1981. Etude du pouvoir agrégatif des reines de Myrmica rubra. Ins. Sociaux, 28, 353-370.
Evesham E.I., Cammaerts M-C. 1984. Preliminary studies of worker behaviour towards alien queens, in the ant Myrmica rubra L. Biology of Behaviour, 9, 131-143.
Cammaerts M-C., Cammaerts R. 1984. Adoption ou élimination de reines étrangères par les ouvrières de Myrmica rubra (Formicidae). Devenir de sociétés orphelines. Annales des Sciences Naturelles, Zoologie, S13, V6, 207-220.
Cammaerts M-C 1985. Ethological and physiological changes occurring in workers of Myrmica rubra L. maintained without queens. Behavioural Processes, 10, 375-385.
Cammaerts M-C., Scanu M. 1985. Etude de facteurs expliquant la variabilité des groupements d’ouvrières de Myrmica rubra L. (Hymenoptera Formicidae) autour de leurs reines. Annls Soc. R. Zool. Belg., 115, 13-28.
Cammaerts M-C., Cammaerts R., Bruge H. 1987. Some physiological information on the microgyne form of Myrmica rubra L. (Hymenoptera, Formicidae). Annls Soc. R. Zool. Bel., 117, 147-158.
● cognition
Cammaerts M.-C. 2010. Estimation of elapsed time by ants. Bull Soc. R. Ent. Belg., 146: 189-195.
Cammaerts M.-C., Cammaerts R. 2016. Spatial expectation of food location in an ant on basis of previous food locations (Hymenoptera, Formicidae). Journal of Ethology, 35 (1): 9 p, Doi: 10.1007/s10164-016-0494-4.
Cammaerts M.-C., Cammaerts R. 2016. Ants can expect the time of an event on basis of previous experiences. ISRN Entomology. Article ID 9473128, 9 pages, Doi: org/10.1155/2016/9473128.
Cammaerts M.-C. 2017. Ants’ ability in solving simple problems. Int. J Biology, 9 (3): 26-37. http://www.ccsenet.org/journal/index.php/ijb/issue/view/1810
Cammaerts M.-C. 2017. Cognitive differences between conspecific ant colonies. Journal of Behavior, 2 (1): 1005, 12p.
Cammaerts M.-C. 2017. In a novel situation, ants can learn to react as never before – a preliminary study. Journal of Behavior, 2 (2): 1011.
Cammaerts M.-C. 2018. Can Myrmica rubra ants use tools or learn to use them? Int. J. Biol. 10 (1): 1-12. URL: https://doi.org/10.5539/ijb.v10n1p1
Cammaerts M.-C., Cammaerts R. 2018. Learning a behavioral sequence: an accessible challenge for Myrmica sabuleti workers? Int J of Biology, 10 (2): 1-14. https://doi.org/10.5539/ijb.v10n2p1
Cammaerts M.-C., Cammaerts R. 2018. Ants can acquire some serial recognition. Int J Biology, 10 (2): 23-32. https://doi.org/10.5539/ijb.v10n2p31
Cammaerts M.-C., Cammaerts R. 2018. Myrmica sabuleti workers cannot acquire serial recognition if not rewarded. Int. J. Biology. 10 (3): 39-46. Doi: 10.5539/ijb.V10n3p38
Cammaerts M.-C., Cammaerts R. 2018. Can ants apply what they acquired through operant conditioning? Int. J. Biol. 10 (4): 16-22. https://doi.org/10.5539/ijb.v10n4p16
Cammaerts M.-C., Cammaerts R. 2022. Association between visual cues and time of day in an ant. Journal of Ethology, Doi: 10.1007/s10164-022-00751-4
Cammaerts M.-C., Cammaerts R. Ants’ capability of associating odors with time periods of the day. Journal of Ethololy, accepted, soon in press
Cammaerts M.-C., Cammaerts R. 2022. Memory loss and time duration perception in an ant. Trends in Entomology, 18: 43-59.
Cammaerts M.-C., Cammaerts R. 2023. Summary of newly found ants’ cognitive abilities, and their occurrence in humans. J of Bilo and Life Sciences. 14 (2): 39-57.
Cammaerts M.-C. New insight on ant colony organization. Research Trends, accepted, Publised on line
nesis of abilities, skills
Cammaerts-Tricot M-C. 1974. Production and perception of attractive pheromone by differently aged workers of Myrmica rubra (Hymenoptera – Formicidae). Ins. Sociaux, 21, 235-248.
Cammaerts-Tricot M-C., Verhaeghe J-C. 1974. Ontogenesis of trail pheromone production and trail following behaviour in the workers of Myrmica rubra L. Ins. Sociaux, 21, 275-282.
Cammaerts-Tricot M-C. 1975. Ontogenesis of the defense reactions in the workers of Myrmica rubra L. (Hymenoptera – Formicidae). Animal Behaviour, 23, 124-130.
Cammaerts M.-C. 2013. Learning of trail following behaviour by young Myrmica rubra workers (Hymenoptera, Formicidae). ISRN Entomology. (Article ID 792891, 6 pages), 1-6. doi:10.1155/2013/792891.
Cammaerts M.-C. 2014. Ants’ learning of nest entrance characteristics (Hymenoptera, Formicidae). Bulletin of Entomological Research. 104 (1): 29-34, doi:10.1017/S0007485313000436
Cammaerts M.-C. 2014. Learning of foraging area specific marking odor by ants (Hymenoptera, Formicidae). Trends in Entomology, 10: 11-19.
Cammaerts M.-C. 2014. Performance of the species-typical alarm response in young workers of the ant Myrmica sabuleti is induced by interactions with mature workers.Journal of Insect Science. 14 (1): 234- doi: 10.1093/jisesa/ieu096.
Cammaerts M.-C., Gosset G. 2014. Ontogenesis of visual and olfactory kin recognition, in the ant Myrmmica sabuleti (Hymenoptera, Formicidae). Annales de la Société Entomologique de France, 50: 358-366. DOI : 10.1080/0003792271.2014.981406
Cammaerts M.-C., Cammaerts R. 2015. Ontogenesis of ants’ cognitive abilities (Hymenoptera, Formicidae). Advances Studies in Biology, Vol 7: 335-348 + synopsis: 349-350.
Cammaerts M.-C, Cammaerts R. 2015. Expectative behavior can be acquired by ants in the course of their life. Trends in Entomology. 11: 73-83
Cammaerts M.-C., Cammaerts R. 2022. Ants’ capability of associating odors with time periods of the day. Journal of Ethology, https://doi.org/10.1007/s10164-022-00770-1
Cammaerts M.-C., Cammaerts R. 2023. The workers of the ant Myrmica sabuleti can learn and use a sequence of four odors to navigate between nest and food site. J Ethology and Animal Science, 5(1):000127
Cammaerts M.-C., Cammaerts R. 2023. Summary of newly found ants’ cognitive abilities, and their occurrence in humans. Journal of Biology and Life Sciences. 14 (2): 39-57. https://doi.org/10.5296/jbls.v14i2.20867
Cammaerts M.-C., Cammaerts R. Is the ants’ sensitivity to numbers’ parity innate or acquired? International Journal of Biology. In writing
Projects:
sensu stricto ants’ idiosyncrasy
Ants’ instinctive choice of needed food elements.
Ants’ instinctive choice of non-dangerous products
● numerical abilities
Cammaerts M.-C., Cammaerts R. 2019. Ants are at the first stage of the notion of zero. Int. J. Biol. 11 (1): 54-65 https://doi.org/10.5539/ijb.v11n1p54
Cammaerts M.-C., Cammaerts R. 2019. Ants’ notion of zero through the perception of the absence of an odor. Int. J. Biology. 11 (2) 1-12. URL: https://doi.org/10.5539/ijb.v11n2px
Cammaerts M.-C., Cammaerts R. 2019. Ants’ capability of adding numbers of identical elements. Int. J. Biol, 11 (3): 25-36.
Cammaerts M.-C., Cammaerts R. 2019. Ants fail to add numbers of same elements seen consecutively. Int. J. Biol. 11 (3): 37-48.
Cammaerts M.-C., Cammaerts R. 2019. Ants correctly locate the zero in a continuous series of numbers. Int. J. Biol. 11 (4): 16-25.
Cammaerts M.-C., Cammaerts R. 2019. Subtraction-like effect in an ant faced with numbers of elements including a crossed one. Int. J. Biol. 11 (4): 51-66.
Cammaerts M.-C., Cammaerts R. 2019. Left to right oriented number scaling in an ant. Int. J. Biol. 11 (4): 67-79.
Cammaerts M.-C., Cammaerts R. 2020. Ants’ capability of adding and subtracting odors. Int. J. Biol. 12 (1): 1-13
Cammaerts R., Cammaerts M.-C. 2020. Ants’ mental positioning of amounts on a number line. Int. J. Biol. 12 (1): 30-45.
Cammaerts M.-C., Cammaerts, R. 2020. Ants’numerosity ability defined in nine studies. Journal of Biology and Life Sciences. 11 (1): 121-142
Cammaerts M.-C., Cammaerts R. 2020. Young ants already possess a number line. Int. J. Biology, 12 (2): 1-12.
Cammaerts M.-C., Cammaerts, R. 2020. Ants acquire the notion of zero through experiences. Int. J. Biology. 12 (2): 13-25.
Cammaerts M.-C., Cammaerts R. 2020. Non-numerical distance and size effects in an ant. J Biol. and Life Sciences. 11 (2): 13-35. DOI: https://doi.org/10.5296/jbls.v11i2.16895
Cammaerts M.-C., Cammaerts R. 2020. Influence of shape, color, size and relative position of elements on their counting by an ant. Int. J. Biol. 12 (2): 26-40.
Cammaerts M.-C., Cammaerts R. 2020. Weber’s law applied to the ants’ visual perception. J Biol and Life Sciences. 11 (2): 36-61. DOI: https://doi.org/10.5296/jbls.v11i2.16896
Cammaerts M.-C., Cammaerts R. 2020. Ants can associate a symbol with a number of elements through conditioning. Int. J. Biol. 12 (3): 1-13.
Cammaerts M.-C., Cammaerts R. 2020. Ants can acquire multiple symbolisms. Int. J. Bio. 12 (3): 18-26.
Cammaerts M.-C., Cammaerts R. 2020. Ants can add up using learned numeric symbols. Int. J; Biol. 12 (3): 27-39.
Cammaerts M.-C., Cammaerts R. 2020. Ants’ acquisition of a symbol for zero and its use to add. Int J Biol. 12 (4): 1-12. doi: 10.5539/ijb.v12n4p1
Cammaerts M.-C., Cammaerts R. 2020. Summary of seven more studies on numerosity abilities in an ant, four of them relating to human competence. J Biol and Life Sciences, 11 (2): 296-326. URL: https://doi.org/10.5296/jbls.v11i2.17892
Cammaerts M.-C., Cammaerts R. 2021. Ants can anticipate the following quantity in an arithmetic sequence. Behavioral Sciences, 11 (2): 18, 13 p. https://doi.org/10.3390/bs11020018
Cammaerts M.-C., Cammaerts R. 2021. Ants can anticipatively and correctly increment the last quantity of a learned arithmetic sequence. International Journal of Biology, 13 (1): 16-25.
Cammaerts M.-C., Cammaerts R. 2021. Ants can expect the size of the next element of a geometric sequence of increasing or decreasing shapes, only if this sequence is present. Int. J. Biology, 13 (2): 37-48.
Cammaerts M.-C., Cammaerts, R. 2021. Reaction of ants to the simultaneous sight of two identical or different cues. Trends in Entomology. 17: 21-24.
Cammaerts M.-C., Cammaerts R. 2021. Critical distance between two identical visual cues allowing their mental addition by an ant. Trends in Entomology, 17: 43-56.
Cammaerts M.-C., Cammaerts, R. 2021. Critical vertical distance between two visual cues for allowing ants to mentally add them. Trends in Entomology, 17 : 77-80.
Cammaerts M.-C., Cammaerts R. 2022. A synthesis of six recent studies on nummerosity abilities in an ant. Journal of Biology and Life Sciences. 13 (1): 1-23
Cammaerts M.-C., Cammaerts R. 2022. Association, in an ant, of a quantity with its time period of occurrence. Int. J. of Biology, 14 (1): 26-36.
ammaerts M.-C., Cammaerts R. 2022. Maximum temporal interval between similar cues for ants still adding them up. Trends in Entomology, 18: 17-27.
Cammaerts M.-C. 2023. When associating numbers of elements with their time period of occurrence, the ants take account of the characteristics of the elements. Int. J. Biology, 15(1):1-13.
Cammaerts M.-C., Cammaerts R. Is the ants’ sensitivity to numbers’ parity innate or acquired? Interntional Journal of Biology. In writing
1.2.using them as biological models for examining the side effects of situations, products and drugs employed by humans
● situations
Cammaerts M.-C., De Doncker P., Patris X., Bellens F. ,Rachidi Z. & Cammaerts D. 2012. GSM 900 MHz radiations inhibits ants’ association between food sites and encountered cues. Electromagnetic Biology and Medicine, 31: 151-165. DOI: 10.3109/15368378.2011.624661
Cammaerts M.-C., Rachidi Z., Bellens F &. De Doncker P. 2013. Food collection and responses to pheromones in an ant species exposed to electromagnetic radiation. Electromagnetic Biology and Medicine. 33: 282-288.
Cammaerts M. C., Johansson O. 2013. Ants can be used as bio-indicators to reveal biological effects of electromagnetic waves from some wireless apparatus. Electromagnetic Biology and Medicine. 7p. DOI: 10.3109/15368378.20
Cammaerts M.-C., Vandenbosh G. A. E., Volski V. 2014. Effect of short-term GSM radiation at representative levels in society, on a biological model: the ant Myrmica sabuleti. Journal of Insect Behaviour. 27: 514-526. (DOI) *10.1007/s10905-014-9446-4
Cammaerts M.-C., Gosset G. 2014. Impact of age, activity and diet on the conditioning performance in the ant Myrmica ruginodis used as a biological model. International Journal of Biology, Vol6, n°2, 10-20. ISSN 1916-9671 E-ISSN 1916-968X.
Cammaerts M.-C. 2016. Effets des ondes électromagnétiques sur les fourmis (utilisées comme modèles biologiques). ARET actualités, supplément de la lettre 90, 49-52.
Cammaerts M (2017). Physical addiction occurs when the effects of the consumed substance rapidly decreases for a time after its consumption was stopped.. Front. Hum. Neurosci. Conference Abstract: Academy of Aphasia 55th Annual Meeting. doi: 10.3389/conf.fnhum.2017.223.00002
Cammaerts M.-C. 2018. Physical dependence on a substance occurs when the effect of this substance rapidly decreases after withdrawal. JSM Anatomy and Physiology, 3 (1): 1017.
Cammaerts M.-C., Cammaerts D. 2018. Impact of environmental noise on insects’ physiology and ethology – a study on ants as models. Biology, Engineering and Medicine. 3 (5): 8pp. DOI: 10.15761/BEM.1000150
Cammaerts M.-C., Cammaerts D. 2018. Environmental odors can affect individuals’ physiology and ethology (a study on ants as models). Biology, Engineering and Medicine. 3 (5): 10pp DOI: 10.15761/BEM.1000154
Cammaerts M.-C., Cammaerts R. 2019. Effects of nocturnal lighting on ethological and physiological traits of an ant. MOJ Ecology and Environmental Sciences. 4 (5): 211-218. Doi: 10.15406/mojes.2019.04.00156
Thill A., Cammaerts M.-C., Balmory A. Biological effects of electromagnetic fields on insects. Reviews on Environmental Health. Finalizing the In writing
● products
Cammaerts M.-C., Cammaerts R. 2016. Aspartame increases food demand and impacts behavior: a study using ants as models. Acta Biomedica Scientia. 3: 9-23.
Cammaerts M.-C., Dero A., Cammaerts R. 2016. Stevia: a true glycoside used as a sweetener and not affecting behavior. Asian Journal of Pharmaceutical Research and healthcare. 8(1): 19-31.
Cammaerts M.-C., Cammaerts R., Dero A. 2015. A 0.123% stevia/aspartame 91/9 aqueous solution balances the effects of the two substances, and may thus be a safer and tastier sweetener to be used. Journal of pharmacy and Nutrition Sciences. 5: 236-248.
Cammaerts M.-C., Cammaerts R. 2016. Effect of glutamate monosodium on behavior and cognition; a study using ants as biological models. Annals of Public Health and Research. Published on line, 10 pages.
Cammaerts M.-C., Rachidi Z., Cammaerts R. 2016. Physiological and ethological disruptions induced by a mixture of saccharose/sucralose 99.5/0.5. A study on ants as models. Asian Journal of Pharmaceutical Research and Health care. 8 (4): 131-143.
Cammaerts M.-C., Cammaerts R. 2018. Is metal leakage from aluminum foil without adverse effects? A study on ants as models. World Journal of Nutrition and Health, 5 (1): 1-12 (12 pages); Doi: 10.15744/2393-9060.5.103
Cammaerts M.-C., Cammaerts R. 2018. Some physiological and ethological effects of aluminum hydroxide; a study using ants as models. Acta Scientific Pharmaceutical Sciences, 2 (3): 38-50.
Cammaerts M.-C., Cammaerts R. 2018. Green clay used as a remedy for gastric hyperacidity has no harmful effect(a study on ants as models). Acta Scientific Pharmaceutical Sciences, 2 (7): 38-44.
Cammaerts M.-C. 2022. Physiological and ethological effects of an herbicide largely used by non professional persons; a study on ants as biological models. Int J Environmental Studies. 10 (06): 1-20.
Cammaerts D., Cammaerts M.-C., Cammaerts R. Adverse effects of the Neonicotinoid Thiacloprid assessed on an ant used as a biological model. Research Journal of Environmental Science. submitted.
● drugs
Cammaerts M.-C., Rachidi Z., Gosset G. 2014. Physiological and ethological effects of caffeine, theophylline, cocaine and atropine; study using the ant Myrmica sabuleti (Hymenoptera, Formicidae) as a biological model. International Journal of Biology. 3: 64-84.
Cammaerts M.C., Gosset G., Rachidi Z. 2014. Some physiological and ethological effects of nicotine; studies on the ant Myrmica sabuleti as a biological model. International Journal of Biology, 6: 64-81.
Cammaerts M.-C. & Cammaerts R. 2014. Physiological and ethological effects of morphine and quinine, using ants as biological models. J. of Pharmaceutical Biology, 4: 43-58.
Cammaerts M.-C. 2015. Les fourmis : modèle biologique pour l’homme ? La lettre de l’association pour la recherche en toxicologie. N° 86, page 4.
Cammaerts M.-C., Cammaerts D. 2015. Physiological and ethological effects of fluoxetine, on ants used as biological models. International Journal of Biology, 7 (2): 1-18, doi:10.5539/ijb.v7n2p1.
Cammaerts M.-C., Cammaerts D. 2015. Physiological and ethological effects of antidepressants: a study using ants as biological models. International J. of Pharmaceutical Sciences invention. 4 (2): 4 – 24. http://www.ijpsi.org/current-issue.html#Paper2, 27.6718/04204024
Cammaerts M.-C., Cammaerts D. 2015. Potential harmful effects of Carbamazepine on aquatic organisms, a study using ants as invertebrate models. Int. J. of Biology. .7 (3): 75- 93, doi: 10.5539/ijb.v7n3p75.
Cammaerts M.-C., Cammaerts R., Rachidi Z. 2015. Effects of buprenorphine and methadone, two analgesics used for suppressing humans’ addiction to morphine; a study using ants as biological models. International Journal of Pharmaceutical Science Invention4: 1-19
Cammaerts M.-C., Rachidi Z., Cammaerts R. 2016. Physiological and ethological effects of alprazolam, using ants as biological models. World journal of pharmaceutical sciences, 4 (6): 474-489.
Cammaerts M.-C., Cammaerts R., Rachidi Z. 2016. Effects of four plants extract used as an anxiolytic; a study on ants as models. Advance in Biomedicine and Pharmacy. 3 (5): 280-295.
Cammaerts M.-C. 2016. Ants as biological models for studying effects of substances used by humans. JSM Anatomy and Physiology. 1. 1003. 8 pages.
Cammaerts M.-C., Cammaerts R. 2016. Ethological and physiological effects of paroxetine, the nowadays most consumed antidepressant. A study on ants as models. Research Trends. 12: 107-126.
Cammaerts M.-C. 2017. Some findings on ants as models, which should be considered for caring of humans. MOJ Biology and Medicine, 1 (5): 00027.
Cammaerts M.-C, Cammaerts D. 2017. Physiological effects of statines; a study on ants as models. Asian Journal of Pharmaceutical Research and Health care, 9 (4). 145-157. DOI: 10.18311/ajprhc/2017/15977
Cammaerts MC. 2017. Adverse Effects of a Natural Product Allowing Decreasing the Amount of Cholesterol in Blood; a Study Using Ants as Models. MOJ Biol Med 1(3): 00013. DOI: 10.15406/mojbm.2017.01.00013
Cammaerts M.-C. 2017. Is the largely used analgesic paracetamol without any adverse effects? A study on ants as models. EC Pharmacology and Toxicology. 4 (2): 51-68.
Cammaerts M.-C. 2017. Biological effects of curcuma, a potential safe analgesic; a study on ants as models. EC nutrition, 11 (3): 99-116.
Cammaerts M.-C. 2017. Physiological and Ethological Effects of Glutathione, a Powerful Antioxidant Food Complement; A Study on Ants as Models. MOJ Biology and Medicine, 2 (2): 00045. medcraveonline.com/MOJBM/MOJBM-02-00045.pdf
Cammaerts M.-C., Cammaerts R. 2018. Ethological and physiological effects of the recently most used analgesic, ibuprofen; a study on ants as models. EC Pharmacology and Toxicology, 6 (4): 251-267.
Cammaerts M.-C. 2018. Ants as models for examining potential adverse effects of products used by humans. JSM Anatomy and Physiology, 3 (1):1016.
Cammaerts M.-C., Cammaerts R. 2018. Ants as models for assessing the effects on health of a CaCO3 + MgCO3 mixture used to decrease gastric hyperacidity. EC Nutrition, 13 (7): 500-514.
Cammaerts M.-C., Cammaerts R. 2018. Is the largely used sildenafil citrate without harmful effect? A study on ants as models. EC Pharmacology and Toxicology, 6 (8): 730-747.
Cammaerts M.-C., Cammaerts R. 2018. Safety of glucosamine, examined on ants as models. MOJ Biology and Medicine. 3 (4): 132-142.
Cammaerts M.-C., Cammaerts D. 2019. Challenging the safety and efficiency of homeopathy: Ignatia amara as an example, ants as models. MOJ Biology and Medicine, 4 (1): 1-14. Doi: 10.15406/mojbm.2019.04.00105
Cammaerts M.-C., Cammaerts R. 2019. Adverse effects of diclofenac observed on ants as models. Acta Scientific Pharmaceutical Sciences 3 (3): 02-13
Cammaerts M.-C., Cammaerts R. 2019. Safety of meloxicam compared to that of diclofenac, using ants as models. Acta Scientific Pharmaceutical Sciences 3 (4): 45-58
Cammaerts M.-C., Cammaerts R. 2019. Adverse effects of etoricoxib, a selectively inhibiting cyclo-oxygenase-2 anti-inflammatory drug, assessed on ants used as a model. EC Pharmacology and Toxicology. 7 (5): 373-392.
Cammaerts M.-C. 2019. Brief report of the effects of seven human drugs studied on ants as models. MOJ Biology and Medicine, 4 (2): 42-47.
Cammaerts M.-C., Cammaerts, R. 2020. Ethological and physiological effects of Sativex, a cannabis-based medicine, examined on ants as models. Acta Scientific Pharmaceutical Sciences, 4 (8): 63-84. DOI: 10.31080/ASPS.2020.04.0568
Cammaerts M.-C, Cammaerts R. 2020. Side effects of chloroquine and hydrochloroquine examined on ants as models. EC pharmacology and Toxicology, 8 (11): 57-82
Cammaerts M.-C., Cammaerts R. 2020. Ethological and physiological side effects of oxybutynine studied on ants as models. MOJ Biology and Medicine, 5 (1): 4-16. DOI: 10.15406/mojbm.2020.05.00116
Cammaerts M.-C., Cammaerts R. 2020. Side effects of mirabegron studied on ants as models. MOJ Biology and Medicine, 5 (1): 18-29.
Cammaerts M.-C. 2021. Harmful effects of humans’ environmental factors and drugs, and advices for a safer live; a study on ants as models. World Journal of Pharmaceutical Sciences, 9 (1): 34-45.
Cammaerts M.-C., Cammaerts R. 2021. Side effects of the cough drug dextromethrophan, studied on ants as models. MOJ Biology and Medicine, 6 (1): 40-50.
Cammaerts M.-C., Cammaerts D. 2021. Amitriptyline: side effects of a largely used antidepressant evaluated on ants as biological models. Acta Scientific Pharmaceutical Sciences, 5 (5): 13-30.
Cammaerts M.-C. 2021. Physiological and ethological impacts of the antidepressant escitalopram studied on ants as models. Acta Scientific Pharmaceutical Sciences, 5 (6): 02-16
Cammaerts M.-C. , Cammaerts R. 2021. Side effects, studied on ants as models, of fluvoxamine nowadays used for treating persons suffering from the Covid-19. EC Pharmacology and Toxicology, 9 (11): 3-25.
Cammaerts M.-C. 2021. Side effects of ivermectin, a drug recently used to treat humans suffering from the Covid-19 illness, a study on ants as models. AS Pharmacology, 2 (10): 40-53
Cammaerts M.-C. 2021. Side effects of the largely used drug indapamide; a study on ants as models. AS Pharmacology, 3 (1): 54-66.
Cammaerts M.-C. 2022. Side effects of drugs studied on ant models: a mini review. MOJ Biology and Medicine, 7 (1): 1-7
Cammaerts M.-C. 2. Adverse effects of furosemide, a largely used diuretic, studied on ant models. AS Pharmacology. 3 (3): 32-46.
Cammaerts M.-C. 2022. Side effects of Apranax (Naproxen) studied on ants as models. AS Pharmacology. 3 (5): 15-30
Cammaerts D., Cammaerts M.-C. 2022. Challenging the safety and efficiency of homeopathy: investigating a step further for “placebo-like” effect on ants as model organisms. MOJ Biology and Medicine. 7 (2): 61-69.
Cammaerts M.-C., Cammaerts D. Adverse effects, studied on ants as models, of Metformin, the drug largely used for caring of patients with type 2 diabetes. International Journal of Biology, soon in press
Cammaerts M.-C. 2022. Not sufficiently, revealed side effects of three largely used drugs, i.e. furosemide, Apranax, Metformin, studied on ants as models. EC Pharmacology and Toxicology, 10 (6): 75-83
Cammaerts M.-C. 2022. Adverse effects of imodium (loperamide), the most used drug for treating diarrhea, examined on ants as biological models. World Journal of Pharmacy and Pharmaceutical Sciences, 11 (9): 1174-1196.
Cammaerts M.-C. 2022. Side effects of tetrazepam, a myorelaxant drug. World Journal of Pharmacy and Pharmaceutical Sciences, World Journal of Pharmacy and Pharmaceutical Sciences, 11 (1): 67-91.
Cammaerts M.-C. 2022. Side effects of the antiemetic drug Motilium (domperidone) studied on ants as models. AS Pharmacology. 3 (11): 9-23.
Cammaerts M.-C. 2022. Side effects of Cognizing, a dietary supplement used to improve the brain functioning, the active substance of which, citicoline, allows treating cerebral disorders, examined on ants as models. EC Nutrition, 17 (10): 29-46.
Cammaerts M.-C. 2022. Side effects of the dietary supplement PQQ studied on ants as models. EC Nutrition, 17 (12): 34-51.
Cammaerts M.-C. 2023. Adverse effects, studied on ants, of six products largely used by humans; a mini review. MOJ Biology and Medicine, 8 (1): 12-18.
Cammaerts M.-C. 2023. Side effects of Brintellix (Vortioxetine) studied on ant model, World Journal of Pharmaceutical Research, 12 (5). Doi: 10.20959/wjpr20235-27455
Thill A., Cammaerts M.-C., Balmori A. Biological effects of electromagnetic fields on insects. Reviews on Environmental Health. Accepted, in revision
Cammaerts D., Cammaerts M.-C., Cammaerts R. Adverse effects of the Neonicotinoid Thiacloprid assessed on an ant used as a biological model. Research Journal of Environmental Science. Acceped, in revision
Cammaerts M.-C. 2023. Adverse effects of the commonly used nutmeg, studied on an ant as model. MOJ Biol and Med. 8 (2): 67-75
Cammaerts M.-C. Adverse effects of the dietary supplement berberine used for decreasing the glycosemy. In experimenting
Project:
Side effects of cajou
Impacts of chemical industry on environmental fauna
. other research works
Cammaerts M.-C., Debeir O & Cammaerts R. 2011. Changes in Paramecium caudatum (Protozoa)near a switched-on GSM telephone. Electromagnetic Biology and Medecine. 30: 57-66.
Cammaerts M.-C., Morel F., Martino F. & Warzée N. 2012 An easy and cheap software-based method to assess two-dimensional trajectory parameters. Belg. J. Zool. 142 : 145-151.
Cammaerts M.-C., Johansson O. 2014. Les champs électromagnétiques créés par l’homme affectent la germination des graines. Résumé français dans la revue ‘tela-Botanica’
Cammaerts M.-C., Johansson O. 2015. Effect of man-made electromagnetic fields on common Brassicaceae Lepidium sativum (cress d’Alinois) seed germination: a preliminary replication study. Phyton: Int. J. of Experim. Botany. N° 84, 132-137.
Panagopoulos D.J., Cammaerts M.-C., Favre D., Balmori A. 2016. A criticism of Verschaeve’s review ‘Comments on Environmental Impact of Radiofrequency Fields from Mobile Phone Base Stations’. Journal of Toxicology and Environmental Health, Part B: Critical Reviews in Environmental Science and Technology. DOI: 10.1080/10643389.2016.1182107
Cammaerts M.-C. 2017. Is electromagnetism one of the causes of the CCD? A work plan for testing this hypothesis. Journal of Behavior, 2 (1), 1006
Cammaerts M.-C., Penasse A. 2019. La recherche sur les ondes électromagnétiques censurée par l’université ? Kairos n° 39 : 20-21.
Cammaerts M.-C. 2020. Invertebrates should be given ethical consideration. Comment on the target paper ‘Minds without spines: evolutionarily inclusive animal ethics’ of Mikhalevich I. and Powell R. Animal Sentience 335, 4 pp.
Cammaerts M.-C. 2023. Comments as a reviewer on the submitted manuscript ‘Maze-dependent learning in Japonese wood ants’ of Tomoko Sakiyoma for the journal BMC Biology. 20/01/2023.
3. educational works
3.1. lessons
● animals’ kingdom panorama
overview on all phyla
● animals’ anatomy and physiology
nutrition, respiration, blood circulation, excretion: for all phyla
squellet, muscle and locomotion, nervous system, sensory organs: for all phyla
● the insects
Anatomy, physiology, panorama (systematic)
Aptilotes : collemboles ; thysanoures (lépisme)
Ptilotes :
Paléoptères : éphémères ; odonates
Néoptères :
paurométaboles : orthoptères ; phasmes ; perce-oreilles ; mantes ; blattes ; termites
hémimétaboles : poux ; 5hémiptères : cigale, puceron, triatome ; mégaloptères : chrysope, fourmilion
holométaboles : 1coléoptères : carabes, chrysomèle, scarabée
siphonaptères
4diptères : – chironome, culex, anophèle, aedes, phlébotome, simulie
– taon, mouche (glossine), mouche causant des myases
3lépidoptères : lymantryide, sphingide, piéride
2hyménoptères : symphites
apocrites térébrants
apocrites aculéates : guêpe, bourdon, abeille, fourmi
1 – 5 : order of importance in nomber of species
Notions:mimétism parthénogenesis, aposématism, batesien mimétism, müllerien mometism, kin selection
● parasitology
Introduction
First part
Protozoaires : Trypanosomiases : – sleeping sickness (Trypanosoma gambiense et rhodiense)
– Chagas illness (Trypanosoma cruzi)
– Kala-azar (Leishmania donovani)
– boutons d’orient (Leishmania spp)
Amibiase
Toxoplasmose
Malaria
Cnidaires
Second part
Plathelmintes
Trématodes : distomatose (Fasciola hepatica) ; schistosomiases
Sestodes : taenia solium, saginata ; hydatydose (echinococcus granulosus)
Aschelminthes
Nématodes : ancylostomose ; ascaridiose ; trichinose ; oxyurose ; filaires : bancroft wireframe (Wuchereria bancrofti) ; loa loase ; onchocercose ; dracunculose
Third part
Arthropodes
Chélicérates
Arachnides : scorpions, araignées, acariens (aoûtats, demodex, sarcopte de la galle, tiques, varroa)
Antennates
Crustacés : sacculine, lernea
Trachéates :
Myriapodes : scolopendre
Insectes :
Hémiptères : triatome, punaise
Anoploures : pou, morpion
Siphonaptères : puces
Diptères : nématocères : culex, anopheles, aedes, phlébotomes, simulies …
brachycères : tabanides, stomoxys, glossina, ‘myases’, …
Lépidoptères
Hyménoptères : symphytes
Apocrites – térébrants
- aculéates : bourdons, guêpes, abeilles, fourmis
parasites sociaux Finale
● The evolution of the Vertebrates
From Pikaïa to Ichtyostega
Prochordés, Vertébrés agnathes, gnathostomes, chondrychtiens, ostéychtiens, crossopterygians, stégocéphales
From Ichtyostega to Madona
Reptiles, oiseaux, mammifères, homo, finale
● human genetics
Introduction
Caryotype
Nombre erroné de chromosomes : trisomie 21, trisomie 18, trisomie 13, syndrome de Klinefelter, de Turner
Aberrations chromosomiques : translocation d’un chromosome 21 surnuméraire, délétion partielle du chromosome 5
Mutations au niveau de gènes : drépanocytose, thalassémie, maladie de Tay-Sachs, mucoviscidose, hémophilie, daltonisme, phénylcétonurie, albinisme, éliptocytose
Facteur Rhésus
Groupes sanguins A B O
Maladies dentaires ; maladie de Capdepont
Cartes génétiques
Amniocentèse
Finale
3.2 practical works
● frog
Characteristics, digestive and respiratory apparatus, urinary and sexual apparatus, muscles, nervous system
● rat
First part: characteristics ; digestive apparatus ; urinary and male sexual apparatus
Second part: circulatory apparatus ; urinary and female sexual apparatus
● little dogfish
First part: characteristics, skin, vertebras, circulatory apparatus (afferent, efferent), schema of the entire circulatory apparatus
Second part: nerves located behind the eye, encephala + the 10 encephalic nerves + the 3 sensory organs ; the cranial bones of a mammals (a dog)
●genetics exercises
Procaryotes ; eucaryotes : Mendel law ; linked genes ; crossing over ; genes on heterochromosomes ; population genetics.
3.3 course of ethology
first part: introduction, classical conditioning, flow diagram, learning, memory etc…
second part: operant conditioning (characteristics, uses), insight behavior, different kinds of learning (spatial, temporal, elapsed time …), memory
third part: ethogram, flow diagram (techniques, analysis, examples, with 2 individuals, etc…)
fourth part: sexual behavior (introduction, sexual signals (visual, auditory etc…) struggle, display), many examples
fifth part: territorial marking (introduction, kinds of marking, marking makings, usefulness, many examples in vertebrates and invertebrates)
sixth part: parental behavior + social behavior (most of them throughout the animals kingdom, theory, young’s education, innate and acquired behavior etc … many examples invertebrates and invertebrates)
4. lecture
● lecture about harmful effects of man-made electromagnetism
5. projects
Side effects of betmiga using ants as models
Report on drugs having severe adverse effects and safer alternatives proposal
Ants’ instinctive choice or reject of products according to their safety
Ants’ instinctive choice of kinds of food they need Anyone is invited to participate to these projects, looking after the bibliography, the mathematical analysis of the results, the il
Identity:
Marie-Claire Cammaerts (Tricot), born the 25th November 1947
Doctor in zoological sciences, diploma of superior education
27, square du Castel Fleuri, 1170 Bruxelles
Phone : 2 32 673 49 69
e-mail : mccammaerts@gmail.com
Professional works:
I worked on ants since 1969, and I learned to 18 -20 years old students in medicine from 1969 till 2015. I thought that researchers (e.g. on ants’ biology, on cognition, on numerosity abilities), practitioners (e.g. interested in the side effects of drugs), as well as students in biology and ethology could be interested to have my different works at their disposal.
Therefore, I set these works on the present web site planned as follows:
1. research works on ants
1.1. on different aspects of their biology
● published papers ranged according their topic
1.2. used as biological models for examining the side effects of ‘products’ used by humans
● published papers ranged according to the ‘product’ examined
2. other research works
3. educational works
3.1. lessons given to students (power points in French)
3.2. practical works explained in power point, in French
3.3 course
4. lecture
I am ready to give any request explanation about my works research works (experimental details, mathematical analysis …), to send software OVS at any one, and to provide the power points (in French) of my lessons, explained practical works, course and lecture to any requester.
My postal address, my e-mail address and my phone number are written her above (section ‘Identity’)
5. projects
Detailed list of works
1. works on ants
1.1 ontheir biology, cognition, ontogenesis of abilities, numerosity abilities …
● general biology
Cammaerts M-C. 1977. Etude démograpique annuelle des sociétés de Myrmica rubra L. des environs de Bruxelles. Ins. Sociaux, 24, 147-161.
Cammaerts R., Cammaerts M-C. 1987. Nest topology, nestmate recognition, territorial marking and homing in the ant Manica rubida (Hymenoptera, Formicidae). Biology of Behaviour, 12, 65-81.
Cammaerts R., Detrain C., Cammaerts M-C. 1990. Host trail following by the myrmecophilous beetle Edaphopaussus favieri (Fairmaire) (Carabidae Paussinae). Insectes Sociaux, 37, 200-211.
Cammaerts M-C., Verhaeghe J-C., Cammaerts R., Lesseux R. 1991. A hiterto unknown ethological factor in the ant Tetramorium impurum (Myrmicinae). Behavioural Processes, 23, 193-203.
Detrain C., Cammaerts M-C. 1991. A new pheromone in the ant Pheidole pallidula (Myrmicinae). Behav. Processes, 24, 123-132.
Cammaerts M-C. 1992. Anatomical origin and isolation of an ethological factor previously found in the workers of Myrmica rubra L. (Formicidae, Myrmicinae). J. Insect Physiol., 38, 101-110.
Verhaeghe J-C., Cammaerts M-C. 1993. Possible function for a previously discovered pheromone on the last sternite of the ant Tetramorium impurum Mayr (Hymenoptera, Formicidae, Myrmicinae). Behavioural Processes, 28, 199-208.
Cammaerts R., Cammaerts M-C., Dejean A. 1994. The trail of the African urticating ant, Tetramorium aculeatum : source, potency and workers’ behavior (Hymenoptera, Formicidae). J. Insect Behavior, 7, 533-552.
Cammaerts M.-C. 2005. How do workers of the ant Myrmica sabuleti (Hymenoptera, Formicidae) estimate the distance they walk? Belgian Journal of Entomology, 7, 87-98.
Cammaerts M.-C., Vandenbusshe A., Debeir O. 2008. Méthode d’étude de la forme d’une structure microscopique, opaque et solide, appliquée à l’œil d’une fourmi. Belgian Journal of Entomology, 10: 67-79.
Rachidi Z., Cammaerts M.-C., Debeir O. 2008. Morphometric study of the eye of three species of Myrmica (Formicidae). Belgian Journal of Entomology, 10 : 81-91.
Cammaerts M.-C., Cammaerts R. 2015. Are ants (Hymenoptera, Formicidae) capable of self recognition? Journal of Sciences, 5 (7): 521-532.
Cammaerts M.-C. 2017. Some new information on ants’ cemeteries organization. Asian Journal of Biology, 2 (1): 1 -10.
● chemical analysis of their secretions
Cammaerts-Tricot M-C., Morgan E.D., Tyler R.C., Braekman J-C., 1976. Dufour’s gland secretion of Myrmica rubra : chemical, electrophysiological and ethological studies. J. Insect Physiol., 22, 927-932.
Cammaerts-Tricot M-C., Morgan E.D., Tyler R.C. 1977. Isolation of the trail pheromone of Myrmica rubra. J. Insect Physiol., 23, 421-427.
Morgan E.D., Tyler R.C., Cammaerts M-C. 1977. Identification of the components of the Dufour’s gland secretion of the ant Myrmica rubra L. and their behavioural responses. J. Insect Physiol., 23, 511-515.
Cammaerts M-C., Inwood M.R., Morgan E.D., Parry K., Tyler R.C. 1978. Comparative study of the pheromones emitted by workers of the ants Myrmica rubra and Myrmica scabrinodis. J. Insect Physiol., 24, 207-214.
Morgan E.D., Inwood M.R., Cammaerts M-C. 1978. The mandibular gland secretion of the ant Myrmica scabrinodis. Physiol. Entomol., 3, 107-114.
Cammaerts M-C., Evershed R.P., Morgan E.D. 1981a. Comparative study of the Dufour gland secretion of workers of four species of Myrmica ants. J. Insect Physiol., 27, 59-65.
Cammaerts M-C., Evershed R.P., Morgan E.D. 1981b. Comparative study of the mandibular gland secretion of workers of four species of Myrmica ants. J. Insect Physiol., 27, 225-231.
Evershed R.P., Morgan E.D., Cammaerts M-C. 1981. Identification of the trail pheromone of the ant Myrmica rubra L., and related species. Naturwissenschaften, 67, 374-385.
Cammaerts M-C., Evershed R.P., Morgan E.D. 1982. Mandibular gland secretion of Myrmica rugulosa and Myrmica schenki ; comparison with four other Myrmica species. J. Insect Physiol., 7, 119-125
Attygalle A., Cammaerts M-C., Morgan E.D. 1983. Dufour gland secretion of Myrmica rugulosa and Myrmica schenki. J. Insect Physiol., 1, 27-32.
Evershed R.P., Morgan E.D., Cammaerts M-C. 1982. 3-Ethyl-2,5-dimethylpyrazine, the trail pheromone from the venom gland of eight species of Myrmica ants. Insect Biochemistry, 12, 383-391.
Cammaerts M-C., Evershed R.P., Morgan E.D. 1983. The volatile components of the mandibular gland secretion of workers of the ants Myrmica lobicornis and Myrmica sulcinodis. J. Insect Physiol., 29, 659-664.
Attygalle A.B., Evershed R.P., Morgan E.D., Cammaerts M-C. 1983. Dufour gland secretion of workers of the ants Myrmica sulcinodis and lobicornis, and comparison with six other species of Myrmica. Insect Biochemistry, 13, 507-512.
Cammaerts M-C., Attygalle A.B., Morgan E.D. 1985. The pheromonal activity of chiral 3-octanol for Myrmica ants. Physiol. Entomol., 10, 33-36.
Attygalle A.B., Cammaerts M-C., Cammaerts R., Lancaster V., Morgan E.D. 1986. Chemical and ethological studies of the trail pheromone of the ant Manica rubida (Hymenoptera, Formicidae). Physiol. Entomol., 11, 125-132.
Cammaerts M-C., Mori K. 1987. Behavioural activity of pure chiral 3-octanol in Myrmica scabrinodis Nyl. and Myrmica rubra L. Physiol. Entomol., 12, 381-385.
Cammaerts M-C., Attygalle A., Vostrouwsky O., Besttmann H.J. 1988. Ethological studies of the mandibular gland secretion of the ant Manica rubida (Formicidae – Myrmicinae). J. Insect Physiol., 34, 347-350.
Attygalle A.B., Cammaerts M-C., Jackson B.D., Morgan E.D. 1990. Chemical and behavioural studies on the Dufour gland contents of Manica rubida (Hymenoptera: Formicidae). J. Chemical Ecol., 16, 827-840.
Jackson B.D., Keegans S.J., Morgan E.D., Cammaerts M-C., Cammaerts R. 1990. Trail pheromone of the ant Tetramorium meridionale. Naturwissenschaften, 77, 294-296.
Cammaerts M-C., Cammaerts R. 1994. Thin-layer chromatographic isolation of the trail pheromone of the ant Pheidole pallidula. Physiol. Entomol., 19, 258-264.
● chemical communication
Tricot M-C., Pasteels J-M., Tursch B. 1972. Phéromones stimulant et inhibant l’agressivité chez Myrmica rubra. J Insect Physiol., 18, 499-509.
Cammaerts-Tricot M-C. 1973. Phéromones agrégeant les ouvrières de Myrmica rubra. J. Insect Physiol., 19, 1299-1315.
Cammaerts-Tricot M-C. 1974. Piste et phéromone attractive chez la fourmi Myrmica rubra. J. Comp. Physiol., 88, 373-382.
Cammaerts M-C. 1982. Une source inédite de phéromone chez Myrmica rubra L. Ins. Sociaux, 29, 524-534.
Cammaerts M-C. 1984. Probable function for a previously unrecognized pheromone in ants of the genus Myrmica. Behav. Processes, 9, 135-145.
●recruitment of nestmates
Cammaerts-Tricot M-C. 1974. Recrutement d’ouvrières, chez Myrmica rubra, par les phéromones de l’appareil à venin. Behaviour, L, 1-2, 111-122.
Cammaerts M-C. 1977. Recrutement d’ouvrières vers une source d’eau pure ou sucrée chez la fourmi Myrmica rubra L. (Formicidae). Biology of Behaviour, 2, 287-308.
Cammaerts M-C. 1978. Recruitment to food in Myrmica rubra. Biology of Behaviour, 4, 159-172.
Cammaerts M-C. 1980. Système d’approvisionnement chez Myrmica scabrinodis. Ins. Sociaux, 27, 328-342.
Cammaerts M-C., Cammaerts R 1980. Food recruitment strategies of the ants Myrmica sabuleti and Myrmica ruginodis. Behavioural Processes, 5, 251-270.
Cammaerts M-C., Cammaerts R. 1981. Food gathering method of Myrmica rugulosa (Formicidae) including an original system for ants’ recruitment. Biology of Behaviour, 6, 239-254.
Cammaerts M-C., Cammaerts R. 1985. Food-collection behaviour of the ant Manica rubida. Biology of Behaviour, 10, 291-308.
● area marking
Cammaerts-Tricot M-C., Morgan E.D., Tyler R.C. 1977. Territorial marking in the ant Myrmica rubra L. (Formicidae). Biologie du Comportement, 2, 263-272.
Mayade S., Cammaerts M-C., Suzzoni J-P. 1993. Home-range marking and territorial marking in Cataglyphis cursor (Hymenoptera, Formicidae). Behav. Processes, 30, 131-142.
Cammaerts M-C., Cammaerts R. 1996. Area marking in the ant Pheidole pallidula (Myrmicinae). Behav. Processes, 37, 21-30.
Cammaerts M-C., Cammaerts R. 1998. Marking of nest entrance vicinity in the ant Pheidole pallidula (Formicidae, Myrmicinae). Behav. Processes, 42, 19-31.
Cammaerts M-C., Cammaerts R. 1999. Marking of nest entrances and their vicinity in the ant Myrmica rubra. Biologia, 54, 553-566.
Cammaerts M-C., Cammaerts R. 2000. Foraging area marking in two related Tetramorium ant species (Hymenoptera : Formicidae). J. Ins. Behavior, 13, 679-698.
Cammaerts M-C., Cammaerts R. 2001 Marking of nest entrances and vicinity in two related Tetramorium ant species (Hymenoptera : Formicidae). J. Ins. Behavior, 14, 247-269.
Cammaerts M-C., Cammaerts R. 2000 Nest odour in the ant Myrmica rubra (Myrmicinae). Biologia, 55, 509-523.
●visual perception
Cammaerts M-C. 2004. Some characteristics of the visual perception of the ant Myrmica sabuleti. Physiological Entomology, 29, 472-482.
Cammaerts, M.-C. 2005. Sensitivity and adaptation of Myrmica sabuleti workers (Hymenoptera : Formicidae) to light. Myrmecologishe Nachrichten, 7, 77-86.
Cammaerts M.-C. 2006. Discrimination visuelle de formes, de contours, de nombres d’éléments et de l’orientation d’un élément par la fourmi Myrmica sabuleti. Belgian Journal of Entomology. 8, 43-54.
Cammaerts M.-C. 2008. Visual discrimination of cues differing as for their number of elements, their shape or their orientation, by the ant Myrmica sabuleti. Biologia, 63 : 1169-1180.
Cammaerts M.-C. 2007. Perspective vision in workers of Myrmica sabuleti Meinert, 1861 (Hymenoptera : Formicidae). Myrmecological News, 10, 21-26.
Cammaerts M.-C. 2007. Colour vision in the ant Myrmica sabuleti Meinert, 1861 (Hymenoptera : Formicidae). Myrmecological News, 10, 41-50.
Cammaerts M.-C., Cammaerts D. 2009. Light thresholds for colour vision in the workers of the ant Myrmica sabuleti (Hymenoptera : Formicidae). Belgian Journal of Zoology, 138 : 40-49.
Cammaerts M.-C. 2011. Visual vertical subtended angle of Myrmica ruginodis and Myrmica rubra (Formicidae, Hymenoptera). Bull Soc. R. Belg. Ent, 147: 113-120.
Cammaerts M.-C. 2012. The visual perception of the ant Myrmica ruginodis (Hymenoptera – Formicidae). Biologia, 67: 1165-1174
Cammaerts M.-C. 2013. Myrmica rubra workers’ visual perception (Hymenoptera, Formicidae). Belg. J. Zool. 143: 69-78.
● navigation
Cammaerts M.-C., Lambert A. 2009. Maze negotiation by a Myrmicine ant (Hymenoptera: Formicidae). Myrmecological news. 12: 41-49.
Cammaerts M.-C., Rachidi Z. 2009. Olfactory conditioning and use of visual and odorous elements for movement in the ant Myrmica sabuleti (Hymenoptera, Formicidae). Myrmecological news. 12: 117-127.
Cammaerts M.-C., Rachidi Z., Beke S. & Essaadi Y. 2012. Use of olfactory and visual cues for traveling by the ant Myrmica ruginodis (Hymenoptera, Formicidae). Myrmecological News, 16:45-55.
Cammaerts M.-C. 2012. Navigation system of the ant Myrmica rubra (Hymenoptera, Formicidae). Myrmecological News. 16: 111-121.
●conditioning
Cammaers M-C. 2004. Classical conditioning, temporal learning and spatial learning in the ant Myrmica sabuleti. Biologia, 59, 243-256.
Cammaerts M-C. 2004. Visual cue generalisation and spatial conditioning in the ant Myrmica sabuleti. Biologia, 59, 257-271.
Cammaerts M.-C. 2004. Operant conditioning in the ant Myrmica sabuleti. Behavioral Processes, 67, 417-425.
Cammaerts M.-C., Rachidi Z. & Cammaerts D. 2011. Collective operant conditioning and circadian rhythms in the ant Myrmica sabuleti (Hymenoptera, Formicidae). Bull. Soc. R. Belg. Ent. 147: 142-154.
Cammaerts M.-C., Nemeghaire S. 2012. Why do workers of Myrmica ruginodis (Hymenoptera, Formicidae) navigate by relying mainly on their vision? Bull Soc. R. Ent. Belg. 148: 42-52.
Cammaerts M.-C 2012. Olfactory and visual operant conditioning in the ant Myrmica rubra (Hymenoptera, Formicidae). Bull Soc. R. Ent. Belg. 148: 199-208.
Cammaerts M.-C. 2013. Sensu stricto individual conditioning, and imitation, in the ant Myrmica sabuleti (Hymenoptera, Formicidae). Annales de la société entomologique de France, 49: 402-412.
Cammaerts M.-C. 2013. Spatio-temporal learning in three Myrmica species (Hymenoptera, Formicidae). Bull Soc. R. Ent. Belg. 149: 131-138.
Cammaerts M.-C. 2013. Age dependent spatio-temporal learning in the ant Myrmica sabuleti (Hymenoptera, Formicidae), Bull Soc. R. Ent. Belg. 149 :205-212.
●visual perception + navigation + conditioning
Cammaerts M.-C. & Cammaerts D. 2014. Comparative outlook over three Myrmica species’ biotopes and foragers’ know-how, Biologia, 69: 1051-1058. DOI: 10.2478/s11756-014-0399-Z
● queens
Coglitore C., Cammaerts M-C. 1981. Etude du pouvoir agrégatif des reines de Myrmica rubra. Ins. Sociaux, 28, 353-370.
Evesham E.I., Cammaerts M-C. 1984. Preliminary studies of worker behaviour towards alien queens, in the ant Myrmica rubra L. Biology of Behaviour, 9, 131-143.
Cammaerts M-C., Cammaerts R. 1984. Adoption ou élimination de reines étrangères par les ouvrières de Myrmica rubra (Formicidae). Devenir de sociétés orphelines. Annales des Sciences Naturelles, Zoologie, S13, V6, 207-220.
Cammaerts M-C 1985. Ethological and physiological changes occurring in workers of Myrmica rubra L. maintained without queens. Behavioural Processes, 10, 375-385.
Cammaerts M-C., Scanu M. 1985. Etude de facteurs expliquant la variabilité des groupements d’ouvrières de Myrmica rubra L. (Hymenoptera Formicidae) autour de leurs reines. Annls Soc. R. Zool. Belg., 115, 13-28.
Cammaerts M-C., Cammaerts R., Bruge H. 1987. Some physiological information on the microgyne form of Myrmica rubra L. (Hymenoptera, Formicidae). Annls Soc. R. Zool. Bel., 117, 147-158.
● cognition
Cammaerts M.-C. 2010. Estimation of elapsed time by ants. Bull Soc. R. Ent. Belg., 146: 189-195.
Cammaerts M.-C., Cammaerts R. 2016. Spatial expectation of food location in an ant on basis of previous food locations (Hymenoptera, Formicidae). Journal of Ethology, 35 (1): 9 p, Doi: 10.1007/s10164-016-0494-4.
Cammaerts M.-C., Cammaerts R. 2016. Ants can expect the time of an event on basis of previous experiences. ISRN Entomology. Article ID 9473128, 9 pages, Doi: org/10.1155/2016/9473128.
Cammaerts M.-C. 2017. Ants’ ability in solving simple problems. Int. J Biology, 9 (3): 26-37. http://www.ccsenet.org/journal/index.php/ijb/issue/view/1810
Cammaerts M.-C. 2017. Cognitive differences between conspecific ant colonies. Journal of Behavior, 2 (1): 1005, 12p.
Cammaerts M.-C. 2017. In a novel situation, ants can learn to react as never before – a preliminary study. Journal of Behavior, 2 (2): 1011.
Cammaerts M.-C. 2018. Can Myrmica rubra ants use tools or learn to use them? Int. J. Biol. 10 (1): 1-12. URL: https://doi.org/10.5539/ijb.v10n1p1
Cammaerts M.-C., Cammaerts R. 2018. Learning a behavioral sequence: an accessible challenge for Myrmica sabuleti workers? Int J of Biology, 10 (2): 1-14. https://doi.org/10.5539/ijb.v10n2p1
Cammaerts M.-C., Cammaerts R. 2018. Ants can acquire some serial recognition. Int J Biology, 10 (2): 23-32. https://doi.org/10.5539/ijb.v10n2p31
Cammaerts M.-C., Cammaerts R. 2018. Myrmica sabuleti workers cannot acquire serial recognition if not rewarded. Int. J. Biology. 10 (3): 39-46. Doi: 10.5539/ijb.V10n3p38
Cammaerts M.-C., Cammaerts R. 2018. Can ants apply what they acquired through operant conditioning? Int. J. Biol. 10 (4): 16-22. https://doi.org/10.5539/ijb.v10n4p16
● ontogenesis of abilities
Cammaerts-Tricot M-C. 1974. Production and perception of attractive pheromone by differently aged workers of Myrmica rubra (Hymenoptera – Formicidae). Ins. Sociaux, 21, 235-248.
Cammaerts-Tricot M-C., Verhaeghe J-C. 1974. Ontogenesis of trail pheromone production and trail following behaviour in the workers of Myrmica rubra L. Ins. Sociaux, 21, 275-282.
Cammaerts-Tricot M-C. 1975. Ontogenesis of the defense reactions in the workers of Myrmica rubra L. (Hymenoptera – Formicidae). Animal Behaviour, 23, 124-130.
Cammaerts M.-C. 2013. Learning of trail following behaviour by young Myrmica rubra workers (Hymenoptera, Formicidae). ISRN Entomology. (Article ID 792891, 6 pages), 1-6. doi:10.1155/2013/792891.
Cammaerts M.-C. 2014. Ants’ learning of nest entrance characteristics (Hymenoptera, Formicidae). Bulletin of Entomological Research. 104 (1): 29-34, doi:10.1017/S0007485313000436
Cammaerts M.-C. 2014. Learning of foraging area specific marking odor by ants (Hymenoptera, Formicidae). Trends in Entomology, 10: 11-19.
Cammaerts M.-C. 2014. Performance of the species-typical alarm response in young workers of the ant Myrmica sabuleti is induced by interactions with mature workers.Journal of Insect Science. 14 (1): 234- doi: 10.1093/jisesa/ieu096.
Cammaerts M.-C., Gosset G. 2014. Ontogenesis of visual and olfactory kin recognition, in the ant Myrmmica sabuleti (Hymenoptera, Formicidae). Annales de la Société Entomologique de France, 50: 358-366. DOI : 10.1080/0003792271.2014.981406
Cammaerts M.-C., Cammaerts R. 2015. Ontogenesis of ants’ cognitive abilities (Hymenoptera, Formicidae). Advances Studies in Biology, Vol 7: 335-348 + synopsis: 349-350.
Cammaerts M.-C, Cammaerts R. 2015. Expectative behavior can be acquired by ants in the course of their life. Trends in Entomology. 11: 73-83
●numerical abilities
Cammaerts M.-C., Cammaerts R. 2019. Ants are at the first stage of the notion of zero. Int. J. Biol. 11 (1): 54-65 https://doi.org/10.5539/ijb.v11n1p54
Cammaerts M.-C., Cammaerts R. 2019. Ants’ notion of zero through the perception of the absence of an odor. Int. J. Biology. 11 (2) 1-12. URL: https://doi.org/10.5539/ijb.v11n2px
Cammaerts M.-C., Cammaerts R. 2019. Ants’ capability of adding numbers of identical elements. Int. J. Biol, 11 (3): 25-36.
Cammaerts M.-C., Cammaerts R. 2019. Ants fail to add numbers of same elements seen consecutively. Int. J. Biol. 11 (3): 37-48.
Cammaerts M.-C., Cammaerts R. 2019. Ants correctly locate the zero in a continuous series of numbers. Int. J. Biol. 11 (4): 16-25.
Cammaerts M.-C., Cammaerts R. 2019. Subtraction-like effect in an ant faced with numbers of elements including a crossed one. Int. J. Biol. 11 (4): 51-66.
Cammaerts M.-C., Cammaerts R. 2019. Left to right oriented number scaling in an ant. Int. J. Biol. 11 (4): 67-79.
Cammaerts M.-C., Cammaerts R. 2020. Ants’ capability of adding and subtracting odors. Int. J. Biol. 12 (1): 1-13
Cammaerts R., Cammaerts M.-C. 2020. Ants’ mental positioning of amounts on a number line. Int. J. Biol. 12 (1): 30-45.
Cammaerts M.-C., Cammaerts, R. 2020. Ants’numerosity ability defined in nine studies. Journal of Biology and Life Sciences. 11 (1): 121-142
Cammaerts M.-C., Cammaerts R. 2020. Young ants already possess a number line. Int. J. Biology, 12 (2): 1-12.
Cammaerts M.-C., Cammaerts, R. 2020. Ants acquire the notion of zero through experiences. Int. J. Biology. 12 (2): 13-25.
Cammaerts M.-C., Cammaerts R. 2020. Non-numerical distance and size effects in an ant. J Biol. and Life Sciences. 11 (2): 13-35. DOI: https://doi.org/10.5296/jbls.v11i2.16895
Cammaerts M.-C., Cammaerts R. 2020. Influence of shape, color, size and relative position of elements on their counting by an ant. Int. J. Biol. 12 (2): 26-40.
Cammaerts M.-C., Cammaerts R. 2020. Weber’s law applied to the ants’ visual perception. J Biol and Life Sciences. 11 (2): 36-61. DOI: https://doi.org/10.5296/jbls.v11i2.16896
Cammaerts M.-C., Cammaerts R. 2020. Ants can associate a symbol with a number of elements through conditioning. Int. J. Biol. 12 (3): 1-13.
Cammaerts M.-C., Cammaerts R. 2020. Ants can acquire multiple symbolisms. Int. J. Bio. 12 (3): 18-26.
Cammaerts M.-C., Cammaerts R. 2020. Ants can add up using learned numeric symbols. Int. J; Biol. 12 (3): 27-39.
Cammaerts M.-C., Cammaerts R. 2020. Ants’ acquisition of a symbol for zero and its use to add. Int J Biol. 12 (4): 1-12. doi: 10.5539/ijb.v12n4p1
Cammaerts M.-C., Cammaerts R. 2020. Summary of seven more studies on numerosity abilities in an ant, four of them relating to human competence. J Biol and Life Sciences, 11 (2): 296-326. URL: https://doi.org/10.5296/jbls.v11i2.17892
Cammaerts M.-C., Cammaerts R. 2021. Ants can anticipate the following quantity in an arithmetic sequence. Behavioral Sciences, 11(2): 18, 13 pages
Cammaerts M.-C., Cammaerts, R. Ants can anticipatively correctly increment the last quantity in a learned arithmetic sequence. Int. J. Biol., submitted
Cammaerts M.-C. Can ants expect the size of the following element of an increasing or decreasing geometric sequence? in experiment and writing.
1.2.using them as biological models for examining the side effects of situations, products and drugs employed by humans
● situations
Cammaerts M.-C., De Doncker P., Patris X., Bellens F. ,Rachidi Z. & Cammaerts D. 2012. GSM 900 MHz radiations inhibits ants’ association between food sites and encountered cues. Electromagnetic Biology and Medicine, 31: 151-165. DOI: 10.3109/15368378.2011.624661
Cammaerts M.-C., Rachidi Z., Bellens F &. De Doncker P. 2013. Food collection and responses to pheromones in an ant species exposed to electromagnetic radiation. Electromagnetic Biology and Medicine. 33: 282-288.
Cammaerts M. C., Johansson O. 2013. Ants can be used as bio-indicators to reveal biological effects of electromagnetic waves from some wireless apparatus. Electromagnetic Biology and Medicine. 7p. DOI: 10.3109/15368378.20
Cammaerts M.-C., Vandenbosh G. A. E., Volski V. 2014. Effect of short-term GSM radiation at representative levels in society, on a biological model: the ant Myrmica sabuleti. Journal of Insect Behaviour. 27: 514-526. (DOI) *10.1007/s10905-014-9446-4
Cammaerts M.-C., Gosset G. 2014. Impact of age, activity and diet on the conditioning performance in the ant Myrmica ruginodis used as a biological model. International Journal of Biology, Vol6, n°2, 10-20. ISSN 1916-9671 E-ISSN 1916-968X.
Cammaerts M.-C. 2016. Effets des ondes électromagnétiques sur les fourmis (utilisées comme modèles biologiques). ARET actualités, supplément de la lettre 90, 49-52.
Cammaerts M (2017). Physical addiction occurs when the effects of the consumed substance rapidly decreases for a time after its consumption was stopped.. Front. Hum. Neurosci. Conference Abstract: Academy of Aphasia 55th Annual Meeting. doi: 10.3389/conf.fnhum.2017.223.00002
Cammaerts M.-C. 2018. Physical dependence on a substance occurs when the effect of this substance rapidly decreases after withdrawal. JSM Anatomy and Physiology, 3 (1): 1017.
Cammaerts M.-C., Cammaerts D. 2018. Impact of environmental noise on insects’ physiology and ethology – a study on ants as models. Biology, Engineering and Medicine. 3 (5): 8pp. DOI: 10.15761/BEM.1000150
Cammaerts M.-C., Cammaerts D. 2018. Environmental odors can affect individuals’ physiology and ethology (a study on ants as models). Biology, Engineering and Medicine. 3 (5): 10pp DOI: 10.15761/BEM.1000154
Cammaerts M.-C., Cammaerts R. 2019. Effects of nocturnal lighting on ethological and physiological traits of an ant. MOJ Ecology and Environmental Sciences. 4 (5): 211-218. Doi: 10.15406/mojes.2019.04.00156
● products
Cammaerts M.-C., Cammaerts R. 2016. Aspartame increases food demand and impacts behavior: a study using ants as models. Acta Biomedica Scientia. 3: 9-23.
Cammaerts M.-C., Dero A., Cammaerts R. 2016. Stevia: a true glycoside used as a sweetener and not affecting behavior. Asian Journal of Pharmaceutical Research and healthcare. 8(1): 19-31.
Cammaerts M.-C., Cammaerts R., Dero A. 2015. A 0.123% stevia/aspartame 91/9 aqueous solution balances the effects of the two substances, and may thus be a safer and tastier sweetener to be used. Journal of pharmacy and Nutrition Sciences. 5: 236-248.
Cammaerts M.-C., Cammaerts R. 2016. Effect of glutamate monosodium on behavior and cognition; a study using ants as biological models. Annals of Public Health and Research. Published on line, 10 pages.
Cammaerts M.-C., Rachidi Z., Cammaerts R. 2016. Physiological and ethological disruptions induced by a mixture of saccharose/sucralose 99.5/0.5. A study on ants as models. Asian Journal of Pharmaceutical Research and Health care. 8 (4): 131-143.
Cammaerts M.-C., Cammaerts R. 2018. Is metal leakage from aluminum foil without adverse effects? A study on ants as models. World Journal of Nutrition and Health, 5 (1): 1-12 (12 pages); Doi: 10.15744/2393-9060.5.103
Cammaerts M.-C., Cammaerts R. 2018. Some physiological and ethological effects of aluminum hydroxide; a study using ants as models. Acta Scientific Pharmaceutical Sciences, 2 (3): 38-50.
Cammaerts M.-C., Cammaerts R. 2018. Green clay used as a remedy for gastric hyperacidity has no harmful effect(a study on ants as models). Acta Scientific Pharmaceutical Sciences, 2 (7): 38-44.
● drugs
Cammaerts M.-C., Rachidi Z., Gosset G. 2014. Physiological and ethological effects of caffeine, theophylline, cocaine and atropine; study using the ant Myrmica sabuleti (Hymenoptera, Formicidae) as a biological model. International Journal of Biology. 3: 64-84.
Cammaerts M.C., Gosset G., Rachidi Z. 2014. Some physiological and ethological effects of nicotine; studies on the ant Myrmica sabuleti as a biological model. International Journal of Biology, 6: 64-81.
Cammaerts M.-C. & Cammaerts R. 2014. Physiological and ethological effects of morphine and quinine, using ants as biological models. J. of Pharmaceutical Biology, 4: 43-58.
Cammaerts M.-C. 2015. Les fourmis : modèle biologique pour l’homme ? La lettre de l’association pour la recherche en toxicologie. N° 86, page 4.
Cammaerts M.-C., Cammaerts D. 2015. Physiological and ethological effects of fluoxetine, on ants used as biological models. International Journal of Biology, 7 (2): 1-18, doi:10.5539/ijb.v7n2p1.
Cammaerts M.-C., Cammaerts D. 2015. Physiological and ethological effects of antidepressants: a study using ants as biological models. International J. of Pharmaceutical Sciences invention. 4 (2): 4 – 24. http://www.ijpsi.org/current-issue.html#Paper2, 27.6718/04204024
Cammaerts M.-C., Cammaerts D. 2015. Potential harmful effects of Carbamazepine on aquatic organisms, a study using ants as invertebrate models. Int. J. of Biology. .7 (3): 75- 93, doi: 10.5539/ijb.v7n3p75.
Cammaerts M.-C., Cammaerts R., Rachidi Z. 2015. Effects of buprenorphine and methadone, two analgesics used for suppressing humans’ addiction to morphine; a study using ants as biological models. International Journal of Pharmaceutical Science Invention4: 1-19
Cammaerts M.-C., Rachidi Z., Cammaerts R. 2016. Physiological and ethological effects of alprazolam, using ants as biological models. World journal of pharmaceutical sciences, 4 (6): 474-489.
Cammaerts M.-C., Cammaerts R., Rachidi Z. 2016. Effects of four plants extract used as an anxiolytic; a study on ants as models. Advance in Biomedicine and Pharmacy. 3 (5): 280-295.
Cammaerts M.-C. 2016. Ants as biological models for studying effects of substances used by humans. JSM Anatomy and Physiology. 1. 1003. 8 pages.
Cammaerts M.-C., Cammaerts R. 2016. Ethological and physiological effects of paroxetine, the nowadays most consumed antidepressant. A study on ants as models. Research Trends. 12: 107-126.
Cammaerts M.-C. 2017. Some findings on ants as models, which should be considered for caring of humans. MOJ Biology and Medicine, 1 (5): 00027.
Cammaerts M.-C, Cammaerts D. 2017. Physiological effects of statines; a study on ants as models. Asian Journal of Pharmaceutical Research and Health care, 9 (4). 145-157. DOI: 10.18311/ajprhc/2017/15977
Cammaerts MC. 2017. Adverse Effects of a Natural Product Allowing Decreasing the Amount of Cholesterol in Blood; a Study Using Ants as Models. MOJ Biol Med 1(3): 00013. DOI: 10.15406/mojbm.2017.01.00013
Cammaerts M.-C. 2017. Is the largely used analgesic paracetamol without any adverse effects? A study on ants as models. EC Pharmacology and Toxicology. 4 (2): 51-68.
Cammaerts M.-C. 2017. Biological effects of curcuma, a potential safe analgesic; a study on ants as models. EC nutrition, 11 (3): 99-116.
Cammaerts M.-C. 2017. Physiological and Ethological Effects of Glutathione, a Powerful Antioxidant Food Complement; A Study on Ants as Models. MOJ Biology and Medicine, 2 (2): 00045. medcraveonline.com/MOJBM/MOJBM-02-00045.pdf
Cammaerts M.-C., Cammaerts R. 2018. Ethological and physiological effects of the recently most used analgesic, ibuprofen; a study on ants as models. EC Pharmacology and Toxicology, 6 (4): 251-267.
Cammaerts M.-C. 2018. Ants as models for examining potential adverse effects of products used by humans. JSM Anatomy and Physiology, 3 (1):1016.
Cammaerts M.-C., Cammaerts R. 2018. Ants as models for assessing the effects on health of a CaCO3 + MgCO3 mixture used to decrease gastric hyperacidity. EC Nutrition, 13 (7): 500-514.
Cammaerts M.-C., Cammaerts R. 2018. Is the largely used sildenafil citrate without harmful effect? A study on ants as models. EC Pharmacology and Toxicology, 6 (8): 730-747.
Cammaerts M.-C., Cammaerts R. 2018. Safety of glucosamine, examined on ants as models. MOJ Biology and Medicine. 3 (4): 132-142.
Cammaerts M.-C., Cammaerts D. 2019. Challenging the safety and efficiency of homeopathy: Ignatia amara as an example, ants as models. MOJ Biology and Medicine, 4 (1): 1-14. Doi: 10.15406/mojbm.2019.04.00105
Cammaerts M.-C., Cammaerts R. 2019. Adverse effects of diclofenac observed on ants as models. Acta Scientific Pharmaceutical Sciences 3 (3): 02-13
Cammaerts M.-C., Cammaerts R. 2019. Safety of meloxicam compared to that of diclofenac, using ants as models. Acta Scientific Pharmaceutical Sciences 3 (4): 45-58
Cammaerts M.-C., Cammaerts R. 2019. Adverse effects of etoricoxib, a selectively inhibiting cyclo-oxygenase-2 anti-inflammatory drug, assessed on ants used as a model. EC Pharmacology and Toxicology. 7 (5): 373-392.
Cammaerts M.-C. 2019. Brief report of the effects of seven human drugs studied on ants as models. MOJ Biology and Medicine, 4 (2): 42-47.
Cammaerts M.-C., Cammaerts, R. 2020. Ethological and physiological effects of Sativex, a cannabis-based medicine, examined on ants as models. Acta Scientific Pharmaceutical Sciences, 4 (8): 63-84. DOI: 10.31080/ASPS.2020.04.0568
Cammaerts M.-C, Cammaerts R. 2020. Side effects of chloroquine and hydrochloroquine examined on ants as models. EC pharmacology and Toxicology, 8 (11): 57-82
Cammaerts M.-C., Cammaerts R. 2020. Ethological and physiological side effects of oxybutynine studied on ants as models. MOJ Biology and Medicine, 5 (1): 4-16. DOI: 10.15406/mojbm.2020.05.00116
Cammaerts M.-C., Cammaerts R. Side effects of mirabegron studied on ants as models. MOJ Biology and Medicine, proof correction
Cammaerts M.-C. 2021. Harmful effects of humans’ environmental factors and drugs, and advices for a safer live; a study on ants as models. World Journal of Pharmaceutical Sciences, 9 (1): 34-45.
Cammaerts M.-C., Cammaerts R. 2021. Side effects of the cough drug dextromethrophane, studied on ants as models. MOJ Biology and Medicine, 6(1): 40-50
Cammaerts M.-C., Cammaerts D. 2021. Amitriptyline: side effects of a largely used antidepressant evaluated on ants as biological models. Acta Scientific Pharmaceutical Sciences, in press.
Cammaerts M.-C. Physiological and ethological impacts of the antidepressant escitalopram studied on ants as models. J. Pharmacy and Bioallied Sciences, submitted.
Cammaerts M.-C. Side effects studied on ants as models of fluvoxamine nowadays used for treating persons suffering from the Covid-19. project
2. other research works
Cammaerts M.-C., Debeir O & Cammaerts R. 2011. Changes in Paramecium caudatum (Protozoa)near a switched-on GSM telephone. Electromagnetic Biology and Medecine. 30: 57-66.
Cammaerts M.-C., Morel F., Martino F. & Warzée N. 2012 An easy and cheap software-based method to assess two-dimensional trajectory parameters. Belg. J. Zool. 142 : 145-151.
Cammaerts M.-C., Johansson O. 2014. Les champs électromagnétiques créés par l’homme affectent la germination des graines. Résumé français dans la revue ‘tela-Botanica’
Cammaerts M.-C., Johansson O. 2015. Effect of man-made electromagnetic fields on common Brassicaceae Lepidium sativum (cress d’Alinois) seed germination: a preliminary replication study. Phyton: Int. J. of Experim. Botany. N° 84, 132-137.
Panagopoulos D.J., Cammaerts M.-C., Favre D., Balmori A. 2016. A criticism of Verschaeve’s review ‘Comments on Environmental Impact of Radiofrequency Fields from Mobile Phone Base Stations’. Journal of Toxicology and Environmental Health, Part B: Critical Reviews in Environmental Science and Technology. DOI: 10.1080/10643389.2016.1182107
Cammaerts M.-C. 2017. Is electromagnetism one of the causes of the CCD? A work plan for testing this hypothesis. Journal of Behavior, 2 (1), 1006
Cammaerts M.-C., Penasse A. 2019. La recherche sur les ondes électromagnétiques censurée par l’université ? Kairos n° 39 : 20-21.
Cammaerts M.-C. 2020. Invertebrates should be given ethical consideration. Comment on the target paper ‘Minds without spines: evolutionarily inclusive animal ethics’ of Mikhalevich I. and Powell R. Animal Sentience 335, 4 pp.
3. educational works
3.1. lessons
● animals’ kingdom panorama
overview on all phyla
● animals’ anatomy and physiology
nutrition, respiration, blood circulation, excretion: for all phyla
squellet, muscle and locomotion, nervous system, sensory organs: for all phyla
● the insects
Anatomy, physiology, panorama (systematic)
Aptilotes : collemboles ; thysanoures (lépisme)
Ptilotes :
Paléoptères : éphémères ; odonates
Néoptères :
paurométaboles : orthoptères ; phasmes ; perce-oreilles ; mantes ; blattes ; termites
hémimétaboles : poux ; 5hémiptères : cigale, puceron, triatome ; mégaloptères : chrysope, fourmilion
holométaboles : 1coléoptères : carabes, chrysomèle, scarabée
siphonaptères
4diptères : – chironome, culex, anophèle, aedes, phlébotome, simulie
– taon, mouche (glossine), mouche causant des myases
3lépidoptères : lymantryide, sphingide, piéride
2hyménoptères : symphites
apocrites térébrants
apocrites aculéates : guêpe, bourdon, abeille, fourmi
1 – 5 : order of importance in nomber of species
Notions:mimétism parthénogenesis, aposématism, batesien mimétism, müllerien mometism, kin selection
● parasitology
Introduction
First part
Protozoaires : Trypanosomiases : – sleeping sickness (Trypanosoma gambiense et rhodiense)
– Chagas illness (Trypanosoma cruzi)
– Kala-azar (Leishmania donovani)
– boutons d’orient (Leishmania spp)
Amibiase
Toxoplasmose
Malaria
Cnidaires
Second part
Plathelmintes
Trématodes : distomatose (Fasciola hepatica) ; schistosomiases
Sestodes : taenia solium, saginata ; hydatydose (echinococcus granulosus)
Aschelminthes
Nématodes : ancylostomose ; ascaridiose ; trichinose ; oxyurose ; filaires : bancroft wireframe (Wuchereria bancrofti) ; loa loase ; onchocercose ; dracunculose
Third part
Arthropodes
Chélicérates
Arachnides : scorpions, araignées, acariens (aoûtats, demodex, sarcopte de la galle, tiques, varroa)
Antennates
Crustacés : sacculine, lernea
Trachéates :
Myriapodes : scolopendre
Insectes :
Hémiptères : triatome, punaise
Anoploures : pou, morpion
Siphonaptères : puces
Diptères : nématocères : culex, anopheles, aedes, phlébotomes, simulies …
brachycères : tabanides, stomoxys, glossina, ‘myases’, …
Lépidoptères
Hyménoptères : symphytes
Apocrites – térébrants
- aculéates : bourdons, guêpes, abeilles, fourmis
parasites sociaux Finale
● The evolution of the Vertebrates
From Pikaïa to Ichtyostega
Prochordés, Vertébrés agnathes, gnathostomes, chondrychtiens, ostéychtiens, crossopterygians, stégocéphales
From Ichtyostega to Madona
Reptiles, oiseaux, mammifères, homo, finale
● human genetics
Introduction
Caryotype
Nombre erroné de chromosomes : trisomie 21, trisomie 18, trisomie 13, syndrome de Klinefelter, de Turner
Aberrations chromosomiques : translocation d’un chromosome 21 surnuméraire, délétion partielle du chromosome 5
Mutations au niveau de gènes : drépanocytose, thalassémie, maladie de Tay-Sachs, mucoviscidose, hémophilie, daltonisme, phénylcétonurie, albinisme, éliptocytose
Facteur Rhésus
Groupes sanguins A B O
Maladies dentaires ; maladie de Capdepont
Cartes génétiques
Amniocentèse
Finale
3.2 practical works
● frog
Characteristics, digestive and respiratory apparatus, urinary and sexual apparatus, muscles, nervous system
● rat
First part: characteristics ; digestive apparatus ; urinary and male sexual apparatus
Second part: circulatory apparatus ; urinary and female sexual apparatus
● little dogfish
First part: characteristics, skin, vertebras, circulatory apparatus (afferent, efferent), schema of the entire circulatory apparatus
Second part: nerves located behind the eye, encephala + the 10 encephalic nerves + the 3 sensory organs ; the cranial bones of a mammals (a dog)
●genetics exercises
Procaryotes ; eucaryotes : Mendel law ; linked genes ; crossing over ; genes on heterochromosomes ; population genetics.
3.3 course of ethology
first part: introduction, classical conditioning, flow diagram, learning, memory etc…
second part: operant conditioning (characteristics, uses), insight behavior, different kinds of learning (spatial, temporal, elapsed time …), memory
third part: ethogram, flow diagram (techniques, analysis, examples, with 2 individuals, etc…)
fourth part: sexual behavior (introduction, sexual signals (visual, auditory etc…) struggle, display), many examples
fifth part: territorial marking (introduction, kinds of marking, marking makings, usefulness, many examples in vertebrates and invertebrates)
sixth part: parental behavior + social behavior (most of them throughout the animals kingdom, theory, young’s education, innate and acquired behavior etc … many examples invertebrates and invertebrates)
4. lecture
● lecture about harmful effects of man-made electromagnetism
5. projects
Side effects of betmiga using ants as models
Report on drugs having severe adverse effects and safer alternatives proposal
Ants’ instinctive choice or reject of products according to their safety
Ants’ instinctive choice of kinds of food they need Anyone is invited to participate to these projects, looking after the bibliography, the mathematical analysis of the results, the il
Ants’ instinctive choice of kinds of food they need Anyone is invited to participate to these projects, looking after the bibliography, the mathematical analysis of the results, the il